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Determinants 
Structure 

4.1. Introduction. 

4.2. Determinants. 

4.3. Properties of Determinants. 

4.4. Adjoint of a Matrix. 

4.5. Inverse of a Matrix. 

4.6. Inverse of a Matrix by using Elementary Operations. 

4.7. Solution of Simultaneous Linear Equations. 

4.8. Check Your Progress. 

4.9. Summary. 

4.1. Introduction. In this chapter, we shall learn to evaluate the determinant of a square matrix and then 
with the help of this we will solve some system of linear equations having two or three variables.  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Determinants. 
(ii) Inverse of a matrix. 
(iii) Applying row and column operations wherever required. 
(iv) Solving system linear equations. 

4.1.2. Keywords. Matrix, Determinant, Inverse of a Matrix, Adjoint of a matrix. 
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4.2. Determinants.  

Let A = 
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

a a a

 
 
 
 
 
 

 be a square matrix of order n. Then a unique number can be associated to A, 

known as its determinant. The determinant of A can be denoted by:  

detA  or  |A|  or  |aij|  or  
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

a a a

. 

1. If ( )11 1x1A a= , then the determinant of A is defined as 11| |A a= . 

2. If 11 12

21 22 2x2

a a
A

a a
 

=  
 

, then determinant of A is defined as 
11 12

11 22 12 21

21 22

           
| |     

          

a a
A a a a a

a a
= = −  . 

3. If 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

, then determinant of A is defined as  

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

| |
a a a

a a a a a a
A a a a a a a

a a a a a a
a a a

= = − + . 

4. If 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

    
    
    

          

a a a a
a a a a

A
a a a a
a a a a

 
 
 =
 
 
 

, then determinant of A is defined as  

11 12 13 14
22 23 24 21 23 24 21 22 24 21 22 23

21 22 23 24
11 32 33 34 12 31 33 34 13 31 32 34 14 31 32 33

31 32 33 34
42 43 44 41 43 44 41 42 44 41 42 43

41 42 43 44

    
    

| |
    

          

a a a a
a a a a a a a a a a a a

a a a a
A a a a a a a a a a a a a a a a a

a a a a
a a a a a a a a a a a a

a a a a

= = − + − . 

For matrices of higher order similar procedure can be adopted.  

4.2.1. Singular and Non-singular Matrices:  

Any square matrix A is said to be singular if |A| = 0 and non-singular if |A| ≠ 0.  

4.2.2. Minors and Cofactors. 

Let 
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

A

a a a

 
 
 =
 
 
 

 be any matrix, then minor of an element i ja , denoted by i jM  is the 

determinant of elements of A obtained by removing ith row and jth column of A, keeping the order of 
rest rows and columns unchanged. 
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Thus, 

11 12 1, 1 1, 1 1

21 22 2, 1 2, 1 2

1, 1 1,1,1 1,2

1,1 1,2

...                  ...
 ...                  ...
 ...      ...          ...            ...... ...
 ...         

... ...

j j n

j j n

i j i ji iij

i i

a a a a a
a a a a a

a aa aM
a a

− +

− +

− − − +− −

+ +

= 1 1,

1, 1 1, 1 1,

1 2 , 1 , 1

...
     ...

 ...              ...
... ...      ...          ...            ...

 ...                  ...

i n

i j i j i n

n n n j n j nn

a
a a a

a a a a a

−

+ − + + +

− +

. 

The cofactor of i ja , denoted by i jA , is defined to be ( 1)i j
i jM+− . 

For example, let 11 12

21 22

a a
A

a a
 

=  
 

 be a square matrix of order 2. Then, minors are obtained as 

11 11 22Minor ofM a a= = , 12 12 21Minor ofM a a= =  

21 21 12Minor ofM a a= = , 22 22 11Minor ofM a a= =  

 and cofactors are obtained by 
1 1

11 11 11 22Cofactor of ( 1) .A a M a+= = − = , 

1 2
12 12 12 21Cofactor of ( 1) .A a M a+= = − =− , 

2 1
21 21 21 12Cofactor of ( 1) .A a M a+= = − = − , 

2 2
22 22 22 11Cofactor of ( 1) .A a M a+= = − = . 

Let 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 be a square matrix of order 3. Then,  

22 23
11 11

32 33
Minor of

a a
M a

a a
= = 22 33 23 32a a a a= −  

21 23
12 12

31 33
Minor of

a a
M a

a a
= = 21 33 23 31a a a a= −  

 21 22
13 13

31 32
Minor of

a a
M a

a a
= = 21 32 22 31a a a a= − . 

Minors for remaining elements can be obtained in the similar pattern. Further, 
1 1

11 11 11 11Cofactor of ( 1)A a M M+= = − = 22 33 23 32( )a a a a= −  

 1 2
12 12 12 12Cofactor of ( 1)A a M M+= = − = − 21 33 23 31( )a a a a=− −  

 1 2
13 13 13 13Cofactor of ( 1)A a M M+= = − = 21 32 22 31a a a a= − . 

Cofactors for remaining elements can be obtained in the similar pattern. 
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Remark. It should be noted that if A is any matrix, then its determinant is the sum of products of 
elements of any row and their corresponding cofactors. Thus, 

 1 1 2 2 ...i i i i in inA a A a A a A= + + + . 

4.2.3. Example. Solve for x:  

5 3
2 3
x = 5. 

Solution. Here, 5 3
2 3
x = 5 ⇒  15x−6 = 5 ⇒  15x = 11 ⇒  x = 11

15
. 

4.2.4. Example. Write the minors and co-factors of all the elements in 
1 0 2
3 0 2
5 1 3

 
 
 
 
 

. 

Solution. Let andi j i jM A  denotes the minor and co-factor of the element i ja  respectively, then 

11 11
0 2

minor of 0 2 2
1 3

M a= = = − = −  and ( )1 1
11 111 2A M+= − = − . 

12 12
3 2

minor of 9 10 1
5 3

M a= = = − = −  and ( )1 2
12 121 1A M+= − = . 

13 13
3 0

minor of 3 0 3
5 1

M a= = = − =  and ( )1 3
13 131 3A M+= − = . 

21 21
0 2

minor of 0 2 2
1 3

M a= = = − = −  and ( )2 1
21 211 2A M+= − = . 

22 22
1 2

minor of 3 10 7
5 3

M a= = = − = −  and ( )2 2
22 221 7A M+= − = − . 

23 23
1 0

minor of 1 0 1
5 1

M a= = = − =  and ( )2 3
23 231 1A M+= − = − . 

31 31
0 2

minor of 0 0 0
0 2

M a= = = − =  and ( )3 1
31 311 0A M+= − = . 

32 32
1 2

minor of 2 6 4
3 2

M a= = = − = −  and ( )3 2
32 321 4A M+= − = . 

33 33
1 0

minor of 0 0 0
3 0

M a= = = − =  and ( )3 3
33 331 0A M+= − = . 

4.2.5. Example. If A =
1 2 3
4 5 6
7 8 9

 
 
 
  

 find | |A  by expanding along first row and second column and verify 

that the value is same. 
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Solution. Expanding by first row, we have 

 A  = 1(−1)1+1 5 6
8 9

 + 2( −1)1+2 4 6
7 9

+ 3(−1)1+3 4 5
7 8

 = 1(−3) −2(−6) +3(−3) = 0. 

Again, expanding by second column, we have 

A =2(−1)2+1 4 6
7 9

+5(−1)2+2 1 3
7 9

+8(−1)2+3 1 3
4 6

 = −2(36 −42)+5(9 −21)−8(6−12) = 0. 

Thus the determinant obtained by expanding along different rows are same. 

4.2.6. Determinant using Sarrus Method.  

 Let A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

.  

First write five columns in the following order:  

11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

                    
    

                    
      

                    

a a a a a

a a a a a

a a a a a
 

The value of |A| is given by adding the products of the diagonals going from top to bottom and 
subtracting the products of the diagonals going from bottom to top. Thus 

( ) ( )11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12| |  a a a a a a a a a a a a a a a a aA a+ + −= + +  

Note. Sarrus Method is used only for determinant of order 2 and 3. 

4.2.7. Example. Evaluate the determinant 
1 2 1
5 5 0
2 1 4

 using Sarrus Method. 

Solution. By Sarrus diagram,  

 

 
1                2              1             1              1 

5           5           0           5          5 

 2           1           4          2           1 
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we have,  |A| = (1.5.4 + 2.0.2 + 1.5.1) −  (2.5.1+ 1.0.1 + 4.5.1) 

           = 25−30 = -5. 

4.2.8. Exercise. 

1. Which of the following matrices are singular and which are non-singular. 

 (i) 
4 2
6 3

 
 
 

  (ii) 7 5
0 3

 
 
 

   (iii) 
1 1 1
0 2 2
4 3 7

− 
 
 
  

 

2. For what value of λ, the matrix 7 1
2

 
 λ 

 is singular. 

3. Find the minors and cofactors the following matrices:  

 (i) 1 1
2 1

− 
 − 

   (ii) 7 1
2 3

 
 
 

  

4. Solve the following equations for x:  

  (i) 3 4
8

0 2
x

=   (ii) 6
5

x x
x
=−

−
 

5. Find the following determinants.  

 (i) 2 3
1 2−

   (ii) 
2 3 5
1 3 1
2 4 1

    (iii) 
b c a a

b c a b
c c a b

+
+

+
 

6. Find the determinant using Sarrus Method: 
2 3 5
1 3 1
2 4 1

 

Answer. 

1.   (i) Singular. (ii) Non-singular. (iii) Non-singular. 

2.   λ = 2
7

. 

3.   (i) 11 12 21 221, 2, 1 , 1M M M M=− = = − = , 11 12 21 221, 2, 1, 1A A A A= − = − = =  

   (ii) 11 12 21 223, 2, 1 , 7M M M M= = = = , 11 12 21 223, 2, 1, 7A A A A= = − = − =  

4.  (i) 4
3

  (ii) 3 , 2x = − −  

5.  (i) − 7   (ii) − 9 (iii) 4abc 

6. – 9 
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4.3. Properties of Determinants.  

Using the following properties of determinants, we can evaluate the determinant of a matrix without 
using the evaluation methods discussed earlier. 

We will use the notations 1 2 1 2, ,..., , ,...R R C C  to denote row one, row two, …, column one, column two, ... 
etc. of a matrix. 

1. The value of determinant remains unchanged if rows (columns) are changed into columns (rows), that 
is, if A is a matrix, then |A| = |A′|. 

2. If two adjacent rows (columns) of a determinant are interchanged then the value of determinant is 
multiplied by -1.  

3. If any two rows (columns) are identical then the value of the determinant is zero.  

4. If any two rows (columns) are multiples of each other then the determinant is zero.  

5. If all entries of any row (column) are zero then the determinant is zero. 

6. If each element in a row (column) of a determinant is multiplied by any scalar then the determinant is 
also multiplied by same scalar.  

7. If every element of any row (column) is the sum (or difference) of two or more quantities, then the 
determinant can also be expressed as the sum (difference) of two or more determinants of same order.  

For example, let 
7 2 1 5 2 2 1 5 2 1 2 2 1
4 5 2 3 1 5 2 3 5 2 1 5 2
3 3 2 2 1 3 2 2 3 2 1 3 2

+
∆ = = + = +

+
 

8. If to every element of a row (column) of a determinant be added or subtracted equal multiples of the 
corresponding elements of one or more rows (or columns) then the value of the determinant 
unchanged.  

9. The determinant of product of square matrices of same order is equal to the product of the 
determinants of matrices, that is, |AB| = |A|.|B| 

4.3.1. Example. Without expanding show that following determinant vanishes. 

(i) 
1 3 5
2 6 10
1 1 8

  (ii) 
29 1 4
33 5 4
17 3 2

 

Solution. (i) Let ∆ = 
1 3 5
2 6 10
1 1 8

 

Applying  R2 → R2 − 2R1 and using property 5,we get 
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1 3 5 1 3 5

2 2 6 6 10 10 0 0 0 0
1 1 8 1 1 8

∆ = − − − = =  

        

(ii) Let     ∆ = 
29 1 4
33 5 4
17 3 2

 

 Applying 1 1 37C C C→ − and using property 3, we get  

     
29 28 1 4 1 1 4
33 28 5 4 5 5 4 0
17 14 3 2 3 3 2

−
∆ = − = =

−
 

4.3.2. Example. Using properties of determinants, show that 

2

2

2

1
1 0
1

a a bc
b b ca
c c ab

−

− =

−

. 

Solution : Let  ∆=

2

2

2

1
1
1

a a bc

b b ca

c c ab

−

−

−

  then  

   

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c

−
∆ = + −

−

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c

= −  

Multiplying R1,R2 and R3 of second term of ∆ by a, b and c, we get 

  

2 2

2 2

2 2

1
11

1

a a a a abc

b b b b abc
abc

c c c c abc

∆ = −

2 2

2 2

2 2

1 1

1 1

1 1

a a a a
abcb b b b
abc

c c c c

= −  

 ⇒  

2 2

2 2

2 2

1 1
1 1
1 1

a a a a

b b b b

c c c c

∆ = −   

Applying  C1 ↔ C2 in second term of ∆, we get 

     

2 2

2 2

2 2

1 1

1 1 0

1 1

a a a a

b b b b

c c c c

∆ = − =  
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4.3.3. Example. Show that 32 3 2 4 3 2
3 6 3 10 6 3

a a b a b c
a a b a b c a
a a b a b c

+ + +
+ + + =
+ + +

.  

Solution : Let   

2 3 2 4 3 2 2 3 4 3 2 2 2 4 3 2
3 6 3 10 6 3 3 6 10 6 3 3 3 10 6 3

1 1
2 3 4 3 2 2 2 4 3 2
3 6 10 6 3 3 3 10 6 3

2 3 4 3 2
3 6 10

a a b a b c a a a b c a b a b c
a a b a b c a a a b c a b a b c
a a b a b c a a a b c a b a b c

a a a b c a b c
a a a b c ab a b c
a a a b c a b c

a a a b c
a a a b c
a a a

+ + + + + + +
∆ = + + + = + + + + +

+ + + + + + +

+ + + +
= + + + + +

+ + + +

+ +
= + +

+
0

6 3b c
+

+

 

⇒  3 2 2
1 1 1 1 1 1 1 1 1

2 3 4 2 3 3 2 3 2 2 3 4 2 3 3 2 3 2
3 6 10 3 6 6 2 6 3 3 6 10 3 6 6 3 6 3

a a a a a b a a c
a a a a a b a a c a a b a c
a a a a a b a a c

∆ = + + = + +  

⇒  3 2 2
1 1 1
2 3 4 . 0 . 0
3 6 10

a a b a c∆ = + +  

Applying  C2 → C2 − C1, C3 → C3 − C1, we get  

 3 3 3 3
1 0 0

1 2
2 1 2 1 (7 6)

3 7
3 3 7

a a a a∆ = = × × = − =  

4.3.4. Example. Evaluate 
1 1 1

x y y z z x
z x y
+ + +

.  

Solution: Let ∆ = 
1 1 1

x y y z z x
z x y
+ + +

 

Applying  1 1 2R R R→ + , we get 

   ∆ =
1 1 1

x y z x y z x y z
z x y

+ + + + + +
 = ( )

1 1 1

1 1 1
x y z z x y+ + = 0 

as first and third rows are identical. 
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4.3.5. Example. Show that 

2

2 3

2

( )
( ) 2 ( )

( )

b c ba ca
ab c a cb abc a b c
ac bc a b

+

+ = + +

+

. 

Solution. Let 

2

2

2

( )
( )

( )

b c ba ca

ab c a cb

ac bc a b

+

∆ = +

+

  

Multiplying R1, R2 and R3 by a, b, and c respectively, we get  

   
( )

( )
( )

2 2 2

22 2

22 2

1
b c a ba ca

ab c a b cb
abc

ac bc a b c

+

∆ = +

+

 

Taking a, b and c common from C1,C2 and C3, we get 

   

2 2 2

2 2 2

2 2 2

( )
( )

( )

b c a a
abc b c a b
abc

c c a b

+

∆ = +

+

 

Applying  1 1 3 2 2 3andC C C C C C→ − → − , we get  

   

2 2 2

2 2 2

2 2 2 2 2

( ) 0
0 ( )

( ) ( ) ( )

b c a a

c a b b

c a b c a b a b

+ −

∆ = + −

− + − + +

 

2

2

2

( )( ) 0
0 ( )( )

( )( ) ( )( ) ( )

b c a b c a a

c a b c a b b

c a b c a b c a b c a b a b

+ + + −

= + + + −

+ + − − + + − − +

 

Taking a b c+ + common from C1 and C2, we get 

   

2

2 2

2

0

( ) 0

( )

b c a a

a b c c a b b

c a b c a b a b

+ −

∆ = + + + −

− − − − +

 

Applying  3 3 1 2R R R R→ − − , we get 

    

2

2 2

0

( ) 0
2 2 2

b c a a

a b c c a b b
b a ab

+ −

∆ = + + + −
− −

  

Applying  1 1 2 2( ), ( )C C a C C b→ →  
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2 2
2

2 2

0
( ) 0

2 2 2

ab ac a a
a b c bc ba b b

ab
ab ab ab

+ −
+ +

∆ = + −
− −

 

Applying  1 1 3 2 2 3,C C C C C C→ + → +  

   

2 2
2

2 2( )

0 0 2

ab ac a a
a b c b bc ba b

ab
ab

+
+ +

∆ = +   

Taking a, b and 2ab common from R1, R2 and R3 respectively  

    
2( ) . 2

0 0 1

b c a a
a b c ab ab b c a b

ab

+
+ +

∆ = +  

Now expanding along R3, we get 

   2 2 32 ( ) 2 ( ) [( )( ) ) 2 ( )
b c a

ab a b c ab a b c b c c a ab abc a b c
b c a
+

∆ = + + = + + + + − = + +
+

 

4.3.6. Example. Show that 2
b c c a a b a b c
q r r p p q p q r
y z z x x y x y z

+ + +
+ + + =
+ + +

.  

Solution : Let  
b c c a a b
q r r p p q
y z z x x y

+ + +
∆ = + + +

+ + +
 

Applying  1 1 2 3C C C C→ + + , we get  

   
2( )
2( ) 2
2( )

a b c c a a b a b c c a a b
p q r r p p q p q r r p p q
x y z z x x y x y z z x x y

+ + + + + + + +
∆ = + + + + = + + + +

+ + + + + + + +
  

Applying 2 2 1 3 3 1,C C C C C C→ − → − , we get 

   2
a b c b c
p q r q r
x y z y z

+ + − −
∆ = + + − −

+ + − −
 

Applying  1 1 2 3C C C C→ + + , we get 

   2 2
a b c a b c
p q r p q r
x y z x y z

− −
∆ = − − =

− −
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4.3.7. Exercise. 

1. Without expanding show that following determinant vanishes. 

(i)
1 3 5
2 6 10
31 11 38

 (ii) 
8 2 7

12 3 5
16 4 3

  (iii)
43 1 6
35 7 4
17 3 2

 (iv) 

2

2

2

1

1

1

a bc
a

b ac
b

c ab
c

 

(v) 
42 1 6
28 7 4
14 3 2

  (vi) 
1
1
1

a abc
b abc
c abc

 (vii) 
1
1
1

a b c
b c a
c a b

+
+
+

  (viii) 
1 a abc
1 b abc
1 c abc

 

2. Show that 2 2 2( )( )
a b c
b c a a b c ab bc ca a b c
c a b

= + + + + − − −   

3. Show that  

 (i) 2( ) ( 2 )
x a a
a x a x a x a
a a x

= − +     (ii) 

2

2 2 2 2

2

4
a ab ac

ba b bc a b c

ac bc c

−

− =

−

  

 (iii) 

2

2

2

( )( )( )( )
a a bc

b b ca a b b c c a ab bc ca

c c ab

= − − − + +   (iv) 
1
1 ( )( )( )
1

a bc
b ca b a c a c b
c ab

= − − −   

(v) 

3

3

3

1
1 ( )( )( )( )
1

x x

y y x y y z z x x y z

z z

= − − − + +  

4. Show that  

 (i) 35 4 4 2
10 8 8 3

x y x x
x y x x x
x y x x

+
+ =
+

   (ii) 32 3 2 4 3 2
3 6 3 10 6 3

a a b a b c
a a b a b c a
a a b a b c

+ + +
+ + + =
+ + +

 

5. Show that  

 (i) 3 3 33
b c a b a
c a b c b abc a b c
a b c a c

+ −
+ − = − − −
+ −

  (ii) 2( )( )
b c a b
c a c a a b c a c
a b b c

+
+ = + + −
+

 

4.4. Adjoint of a Matrix. 

Let i j n n
A a

×
 =    be a square matrix. Then the adjoint of matrix A is defined as 

adjA = [Aij]′ 

where Aij is the corresponding co-factor of aij. 
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4.4.1. Example. Find the adjoint of matrix A 1 2
3 4

 
=  
 

.  

Solution. Given that 1 2
3 4

A
 

=  
 

. 

By definitions of Cofactors: 

11 11cofactor of 4A a= =  

   12 12cofactor of 3A a= = −  

  21 21cofactor of 2A a= = −  

  22 22cofactor of 1A a= =  

Thus, 11 12

21 22

4 3 4 2
adj

2 1 3 1
A A

A
A A

′− −     
= = =     − −    

. 

4.4.2. Theorem. If A is square matrix of order n×n, then prove that  

   A (adj A) = A In= (adj A)A. 

4.4.3. Example. Find adjoint of 1 2
3 5

A
 

=  
 

 and also verify that 2(adj ) | | (adj )A A A I A A= = .  

Solution : Given that  1 2
3 5

A
 

=  
 

 

Cofactors of elements of A are: 

11 11cofactor of 5A a= = , 12 12cofactor of 3A a= = −  

  21 21cofactor of 2A a= = − , 22 22cofactor of 1A a= =  

Thus, adjA = 5 3
2 1

′− 
 − 

= 5 2
3 1

− 
 − 

 

Now    1 2
| | 5 6 1

3 5
A = = − = −  

So   A(adjA) = 2
1 2 5 2 1 0

| |
3 5 3 1 0 1

A I
− −     

= =     − −     
 

Again  (adjAA) = 2
5 2 1 2 1 0

| |
3 1 3 5 0 1

A I
− −     

= =     − −     
 

So, we get  

  2(adj ) | | (adj )A A A I A A= =  
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4.4.4. Exercise. 

1. If A = 
1 2
3 5
 
 
 

, B = 
2 0
1 5
 
 
 

 verify, adj(AB) = (adjB) (adjA). 

2. Find the adjoint of matrix 
1 1 2
0 1 2
1 1 3

A
 
 =  
  

. Also show that 3.(adj ) | | . (adj ).A A A I A A= = . 

3. Find the adjoint of following matrices. 

  (i) 5 4
3 2

 
 
 

   (ii) a b
c d
 
 
 

 

4.5. Inverse of a Matrix. 

A square matrix of order n is invertible if there exist a square matrix B of same order such that AB = In = 
BA. 

In such a case, we say that inverse of A is B and inverse of B is A and we write  

A –1 = B, B –1 = A . 

If inverse of a matrix exists, then it is called an invertible matrix. 

4.5.1. Theorem. A square matrix is invertible iff it is non-singular. 

Proof. Let A be an invertible matrix. Then, there exists a matrix B such that  

   nAB I BA= =  

⇒  | | | |nAB I=  

⇒  | | | | 1A B =  

⇒  | | 0A ≠  

⇒  A is a non-singular matrix. 

Conversely, let A be a non-singular square matrix of order n that is, | | 0A ≠ . Then, we know that 
 (adj ) | | (adj )nA A A I A A= =  

Dividing both sides by | |A , 

⇒  1 1adj adj
| | | |nA A I A A

A A
   

= =   
   

 

⇒ 1 1 adj
| |

A A
A

− =  

Hence, A is an invertible matrix. 

Remark. Due to the above theorem, we can say that the inverse of a non-singular matrix A is given by 

  1

| |
adj A

A
A

− =  
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4.5.2. Theorem. If A is an invertible square matrix, then A′  is also invertible and  

   ( ) ( )1 1' .A A− − ′=  

Proof. Since A is an invertible matrix, so | | 0A ≠ , and thus  | | 0A′ ≠ , which implies A′  is also 
invertible. 

Now,  1 1
nAA I A A− −= =  

⇒ ( ) ( ) ( )1 1
nAA I A A− −′ ′= =  

⇒ ( ) ( ) ( )1 1
nA A I A A− −′ ′′ ′= =  

⇒ ( ) ( )1 1A A− − ′′ =  

4.5.3. Theorem. If A and B are invertible matrices of the same order, then so is AB and 

    ( ) 1 1 1AB B A− − −=  

Proof. It is given that A and B are invertible matrices, therefore | | 0 and | | 0A B≠ ≠  

⇒ | || | 0A B ≠  

⇒ | | 0AB ≠  

⇒  AB is a invertible matrix. 

Now,  

  ( )( ) ( ) ( )1 1 1 1 1 1
n nAB B A A BB A A I A AA I− − − − − −= = = =  

and,  

  ( )( ) ( ) ( )1 1 1 1 1 1
n nB A AB B A A B B I B B B I− − − − − −= = = =  

Thus,     ( )( ) ( )( )1 1 1 1
nAB B A I B A AB− − − −= =  

Hence,    ( ) 1 1 1.AB B A− − −=  

4.5.4. Theorem. Inverse of an invertible matrix is always unique. 

Proof. Let A be an invertible matrix of order n × n having matrices B and C as its two inverses. Then, 

nAB BA I= =  and nAC CA I= =  
Now, nAB I=  ⇒ ( ) nC AB C I=  

⇒ ( ) nCA B C I=  

⇒ n nI B C I=  
⇒ B C=  
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Hence, inverse of a matrix is unique. 

4.5.5. Corollary. If A is an invertible matrix, then 1 1( )A A− − = . 

Proof. We have, 

  1 1AA I A A− −= =  

⇒  A is the inverse of A-1, that is, 1 1( )A A− −=  . 

4.5.6. Example. Find the inverse of A = 1 1
1 1

 
 − 

 

Solution : Given that 1 1
1 1

A  
=  − 

 

Therefore, | | 1 1 2 0A = + = ≠ , which implies A−1 exists. 

Now, by definition  

  11 11cofactor of 1A a= =  
  12 12cofactor of 1A a= =  
 21 21cofactor of 1A a= = −  
 22 22cofactor of 1A a= =  

Thus, 1 1 1 1
adj

1 1 1 1
A

′ −   
= =   −   

 

Now 1

1 1
1 11 1 2 2adj
1 1 1 1| | 2

2 2

A A
A

−

 − − 
= = =   

   
  

. 

4.5.7. Example. If A = 2 7
1 4
 
 
 

, show that A2−6A + I = O. Hence find A–1. 

Solution. Here, A2 = A.A = 2 7 2 7
1 4 1 4
   
   
   

 =  
 
 

11 42
6 23

 

So   A2−6A + I =  
 
 

11 42
6 23

−6  
 
 

2 7
1 4

+  
 
 

1 0
0 1

 =  
 
 

11 42
6 23

 −   
 
 

12 42
6 24

 +  
 
 

1 0
0 1

 =  
 
 

0 0
0 0

. 

Hence,   A2−6A + I = O. 

Now using this we have to find A–1. 

   A2−6A + I = O ⇒    6A−A2 = I  

Now pre-multiplying both sides by A–1 we have, 

   A–1 = 6I−A 

So,   A–1 = 6  
 
 

1 0
0 1

−  
 
 

2 7
1 4

 = − 
 − 

4 7
1 2

. 
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4.5.8. Exercise. 

1. Find the inverse of the matrix
2 1 1
1 2 1

1 1 2

− 
 − − 
 − 

 and verify your answer. 

2. For the matrices A = 2 1
4 2

− 
 
 

, B =
6 7
8 9
 
 
 

, verify that (AB)–1 = B –1A –1. 

3. Find the inverse of the matrix A = 1
a b

bcc
a

 
 + 
 

 and show that  

aA−1=(a2+bc+1)I2−aA. 

4. If A = 
1 2 2
2 1 2
2 2 1

 
 
 
  

, show that A2−4A−5I = O and hence find A–1. 

4.6. Inverse of a Matrix by using Elementary Operations. 

4.6.1. Elementary Operations. To obtain inverse of a matrix sometimes we use some operations on a 
given matrix called elementary operations. 

These are of two types: 

1. Elementary row operations. Elementary operation on rows of a matrix are known as elementary 
row operation. Following are the various types of elementary row operations 

i) The interchange of any two rows. By Ri↔Rj, we mean interchanging ith row of the given matrix 
with jth row. 

ii) The multiplication of the elements of row by a non-zero number. By Ri →  k Ri, we mean that the 
elements of ith row of the given matrix are multiplied by k. 

iii) Adding to the elements of a row, the corresponding elements of any other row multiplied by 
any scalar k. By Ri→Ri +kRj, we mean that the elements of jth row of the given matrix are multiplied 
by k and then the elements are added to corresponding elements of ith row. 

Remark. An elementary row operation on the product of two matrices is equivalent to the same 
elementary row operation on the pre-factor. 

4.6.2. To find inverse of a square matrix by using elementary row operation. 

Let A be a non-singular matrix. So, it can be written as A = IA, where I is identity matrix. Now apply 
elementary row operations on A to convert it to I and on right side apply these operations as applied on 
left side to I. If I is converted to B, then this matrix B is inverse of A. 

2. Elementary column Operations. The similar operations are defined for columns and known as 
elementary column operations. Also to find inverse of a matrix A this time we will consider A = AI 
and then apply elementary columns operations on A to convert it to I and on right side apply these 
operations as applied on left side to I. If I is converted to B, then this matrix B is inverse of A. 
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4.6.3. Example. Find inverse using elementary row operations of 1 3
1 4

A
 

=  
 

.  

Solution : Given that  1 3
1 4

A
 

=  
 

, then  1 3
| | 4 3 0

1 4
A = = − ≠ . So A−1 exists.  

Now let A = IA, which implies  1 3 1 0
1 4 0 1

A   
=   

   
 

Applying  R2 → R2 − R1, we get  

1 3 1 0
0 1 1 1

A   
=   −   

 

Applying  R1 → R1 − 3R2, we get 

   1 0 4 3
0 1 1 1

A
−   

=   −   
 

Therefore, 1 4 3
1 1

A− − 
=  − 

.  

4.6.4. Example. Find the inverse of matrix 1 3
1 4
 
 
 

 using elementary column operation.  

Solution. Clearly A is invertible. 

Now let A = AI, which implies  1 3 1 0
1 4 0 1

A   
=   

   
. 

Applying C2 → C2 − 3C1, we get  

1 0 1 3
1 1 0 1

A
−   

=   
   

 

Applying  C1 → C1 − C2, we get 

   1 0 4 3
0 1 1 1

A
−   

=   −   
 

Therefore, 1 4 3
1 1

A− − 
=  − 

.  

4.6.5. Exercise. 

1. Find the inverse of matrix 2 1
5 3

A
 

=  
 

 by using elementary row operations. 

2. Find the inverse of the matrix A = 
1 0 0
3 2 0
1 1 2

 
 
 
  

 using elementary row operations. 
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3. Using elementary column operations, find the inverse of matrix 
2 1 3
4 1 0
7 2 1

A
 
 = − 
 − 

. 

4. Find the inverse of A = 
1 1 2
0 2 3
3 2 4

− 
 − 
 − 

 by using elementary column operations. 

4.7. Solution of Simultaneous Linear Equations. 

A system of linear equation has either unique solution or infinitely many solutions or no solution. If a 
system of linear equations has a solution (whether unique or infinite), then the system is said to be 
consistent and if the system has no solution, it is said to be inconsistent.  

4.7.1. Cramer’s Rule to Solve the Linear Equations. 

1. System of Linear Equation of two variables x and y. 

First we consider a system of linear equations in two variables x and y: 

   1ax by d+ =  
   2cx dy d+ =  

We define D as the determinant obtained from the coefficients of x and y, D1 and D2 are determinants 

obtained by replacing first and second column respectively of D by 1

2

d
d
 
 
 

. Thus, 

  1 1
1 2

2 2
, ,

d b a da b
D D D

d d c dc d
= = =   

If D ≠ 0, then the system has a unique solution given by 

     1 2,D Dx y
D D

= = . 

2. System of Linear Equation of two variables x, y and z. 

Now we consider a system of linear equations in three variables x and y and z: 

      1 1 1 1a x b y c z d+ + =  

     2 2 2 2a x b y c z d+ + =  

     3 3 3 3a x b y c z d+ + =  

Then as defined in case of two variables, we define the following: 

 
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2 3 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

, , ,
a b c d b c a d c a b d

D a b c D d b c D a d c D a b d
a b c d b c a d c a b d

= = = =  

If D≠0, then the system has unique solution and given by 

     1 2 3, ,D D Dx y z
D D D

= = =       

Remark. If D = 0, then the system has either infinitely many solutions or no solution. However, the 
systems with such solutions are not included in the syllabi. 
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4.7.2. Example. Solve the following system of equations using Cramer’s Rule  

    5
2 15

x y
x y

+ =
+ =

 

Solution. Given system of equations is   

    5
2 15

x y
x y

+ =
+ =

 

Then, by definition 

  1 1
2 1 1 0

1 2
D = = − = ≠  

Therefore, the system has a unique solution.  

Now   1
5 1

10 15 5
15 2

D = = − = −  

and   2
1 5

15 5 10
1 15

D = = − = . 

Then, by Cramer’s Rule, the unique solution is given by  

   1 5 5
1

Dx
D

= = − =− ,  2 10 10
1

Dy
D

= = = . 

So, 35, 25x y= − =  is a solution.  

4.7.3. Exercise. Solve the following system of equations by using Cramer’s Rule: 

1.   
1

3 5 6 4
9 2 36 17

x y z
x y z

x y z

+ + =
+ + =

+ − =
   2.  

2 3 0
3 4

3 4 3

y z
x y
x y

− =
+ = −
+ =

  3. 2 3 7
4 5 3

x y
x y
+ =
− =

 

4.  The sum of three numbers is 6. If we multiply the third number by 2 and add the first number to 
it, we get 7. By adding second and third numbers to three times the first number, we get 12. Find 
the numbers. 

5.  The perimeter of a triangle is 45 cm. The longest side exceeds the shortest side by 8 cm and sum 
of the length of the longest and the shortest side is twice the length of the other side. Find the 
lengths of sides of the triangle. 

6.  Find a, b, c when 2( ) , (1) 1, (2) 2, (0) 4f x ax bx c f f f= + + = = = . Determine the quadratic function 
f(x) and find its value when x = 0.  

Answers. 

1.  x = 1 1, 1,
3 3

y z= =−   2. x = 5, y = − 3, z = − 2 

3. 2, 1x y= =     4. 3,1,2   

5. 19 cm, 15 cm, 11 cm   6. 22 5 4, 4x x− +  
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4.7.4. Matrix Method to solve system of linear equations.  

1. System of Linear Equation of two variables x and y. 

First we consider a system of linear equations in two variables x and y:   

1 1 1a x b y d+ =  

    2 2 2a x b y d+ =  

We define A = 1 1 1

2 2 2
, ,

a b x d
X B

a b y d
     

= =     
     

 

Then the given system of equations can be written in matrix form as 

AX=B. 

If |A| ≠ 0, then the system has unique solution given by 

    X = A−1 B. 

2. System of Linear Equation of three variables x, y and z. 

First we consider a system of linear equations in two variables x, y and z: 

    1 1 1 1a x b y c z d+ + =   
    2 2 2 2a x b y c z d+ + =  
    3 3 3 3a x b y c z d+ + =  

Define A = 
1 1 1 1

2 2 2 2

3 3 3 3

, ,
a b c x d
a b c X y B d
a b c z d

     
     = =     
          

. 

If |A| ≠ 0, then the system has unique solution given by 

     X = A−1 B 

Remark. If |A| = 0, then the system has either infinitely many solutions or no solution. However, the 
systems with such solutions are not included in the syllabi. 

4.7.5. Example. Solve the following system of equations by matrix method: 

    1
2 2

x y
x y
+ =
+ =

 

Solution. The given system of equations can be represented in matrix form as AX = B where  

   1 1 1
, ,

2 1 2
x

A X B
y

     
= = =     
     

. 

Now, | | 1 2 1 0A = − = − ≠ . 

Thus, the system has a unique solution given by  

   1X A B−=  
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We need to obtain the inverse of A, for this cofactors of elements of A are    
 11 12 21 221 , 2 , 1 , 1A A A A= = − = − = . 

Thus,   1 2 1 1
adj

1 1 2 1
A

′− −   
= =   − −   

 

and     1 1 11 adj
2 1| |

A A
A

− − 
= =  − 

. 

Therefore, the solution can be obtained from 

     1 1 1 1
2 1 2 0

x
y

−       
= =       −       

. 

Hence x = 2, y = −1 is a solution. 
4.7.6. Exercise. Solve the following system of equations: 

1. 
2 8 5 6

2
2 2

x y z
x y z

x y z

+ + =
+ + = −

+ − =
  2. 

2 3 3 10

1 1 1 10

3 1 2 13

x y z

x y z

x y z

− + =

+ + =

− + =

 

Answers.  

1. 3, 2, 1x y z= − = = −  

2. Use 1
x

 = u, 1
y

= v, 1
z

= w, then solving the system we will obtain u = 2, v = 3, w = 5.  

4.8. Check Your Progress. 

1. Write the minors and cofactors of all elements of 
5 2 1
3 0 2
8 1 3

 
 
 
  

 

2. For the matrix A = 2 3
4 5

− 
 
 

, find the numbers a and b such that A2 + aA + bI = O. Hence find A−1. 

Answers. 

1.  11 12 13 21 22 23 31 32 332, 7, 3, 5, 7, 11, 4, 7, 6M M M M M M M M M= − = − = = = = − = = = −  

 11 12 13 21 22 23 31 32 332, 7, 3, 5, 7, 11, 4, 7, 6A A A A A A A A A= − = = = − = = = = − = −  

4.9. Summary. In this chapter, we discussed about determinants of matrices, invertible matrices and the 
role played by an invertible matrix to solve a system of linear equations having a unique solution. 
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